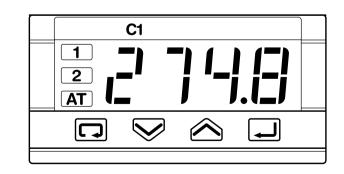


ASCON spa

Controller Indicator Transmitter ¹/₃₂ DIN - 48 x 24

C1 line C6 User manual • M.I.U.C1-3/03.01 • Cod. J30-478-1AC1 IE

ASCON spa 20021 Bollate (Milano) Italy via Falzarego, 9/11 Tel. +39 02 333 371 Fax +39 02 350 4243 http://www.ascon.it e-mail sales@ascon.it



Controller Indicator Transmitter ¹/₃₂ DIN - 48 x 24

C1 line

information

Notes ON ELECTRIC SAFETY AND ELECTROMAGNETIC COMPATIBILITY. Please, read carefully these instructions before proceeding with the installation of the controller. Class II instrument, real panel mounting.

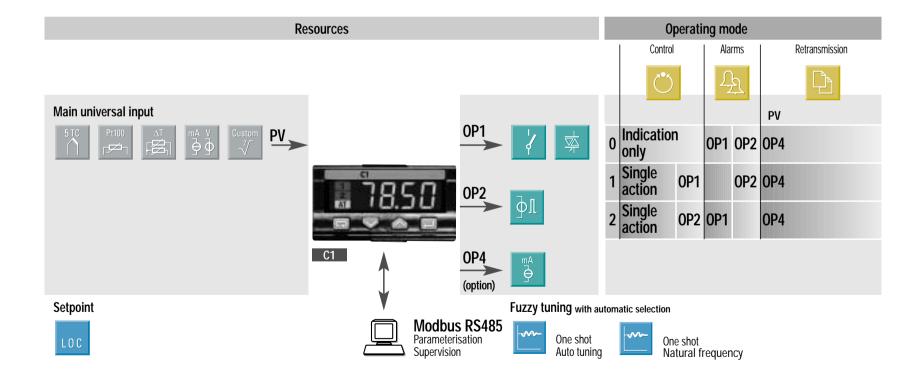
This controller has been designed with compliance to:

Regulations on electrical apparatus (appliance, systems and installations) according to the European Community directive 73/23/EEC amended by the European Comunity directive 93/68/EEC and the Regulations on the essential protection requirements in electrical apparatus EN61010-1:93 + A2:95.

Regulations on Electromagnetic Compatibilityaccording to theEuropean Community directive n089/336/EEC, amended by the EuropeanCommunity directive n° 92/31/EEC, 93/68/EEC, 98/13/EECand the following regulations:Regulations on RF emissionsEN61000-6-3 : 2001EN61000-6-4 : 2001Regulation on RF immunityEN61000-6-2 : 2001industrial equipment and system

It is important to understand that it's responsibility of the installer to ensure the compliance of the regulations on safety requirements and EMC.

The device has no user serviceable parts and requires special equipment and specialised engineers. Therefore, a repair can be hardly carried on directly by the user. For this purpose, the manufacturer provides technical assistance and the repair service for its Customers.


Please, contact your nearest Agent for further information.

All the information and warnings about safety and electromagnetic compatibility are marked with the $\triangle C \in$ sign, at the side of the note.

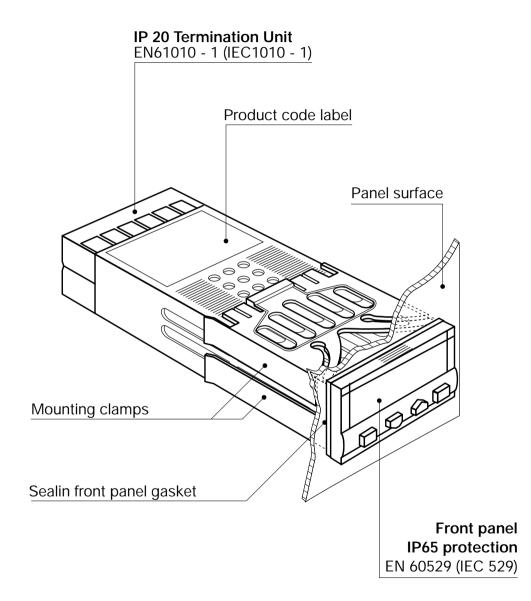
Table of contents

TABLE OF CONTENTS

1	INSTALLATION	Page	4
2	ELECTRICAL CONNECTIONS	Page	8
3	PRODUCT CODING	Page	14
4	OPERATIONS	Page	18
5	AUTOMATIC TUNE	Page	28
6	TECHNICAL SPECIFICATIONS	Page	29

1 - Installation

INSTALLATION


1.1 GENERAL DESCRIPTION

Installation must only be carried out by qualified personnel.

Before proceeding with the installation of this controller, follow the instructions illustrated in this manual and, particularly the installation precautions marked with the ACC symbol, related to the European Community directive on electrical protection and electromagnetic compatibility.

<u>∧</u>(€

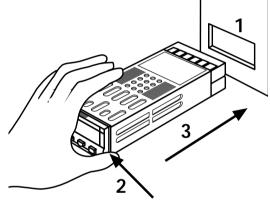
To prevent hands or metal touching parts that may be electrically live, the controllers must be installed in an enclosure and/or in a cubicle.

1 - Installation

1.2 DIMENSIONAL DETAILS 1.3 PANEL CUT-OUT 48 mm 1.89 in 65 mm min 2.56 in min 25 mm 0.99 in 42 mm min. 1.65 in min. $\begin{array}{c} 22.2^{+0.3} \text{ mm} \\ 0.87^{+0.01} \text{ in} \end{array}$ -20 mm max 0.79 in max 45^{+0.6} mm 1.78^{+0.023} in 120 mm 4.72 in

1 - Installation

1.4 ENVIRONMENTAL RATINGS

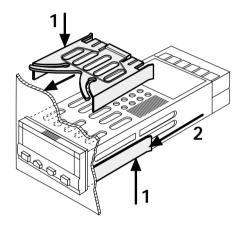


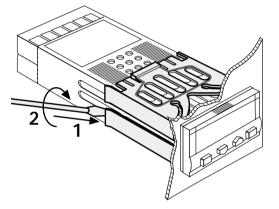
Operating conditions				
2000	Altitude up to 2000 m			
‡°c	Temperature 050°C			
%Rh	Relative humidity 595 % I	non-condensing		
Special cor	oditions	Suggestions		
2000	Altitude > 2000 m	Use 24V \sim supply version		
‡ ∘c	Temperature >50°C	Use forced air ventilation		
%Rh	Humidity > 95 %	Warm up		
	Conducting atmosphere	Use filter		
Forbidden				
	Corrosive atmosphere			
	Explosive atmosphere			

1.5 PANEL MOUNTING [1]

1.5.1 INSERT THE INSTRUMENT

- **1** Prepare panel cut-out
- 2 Check front panel gasket position
- **3** Insert the instrument through the cut-out



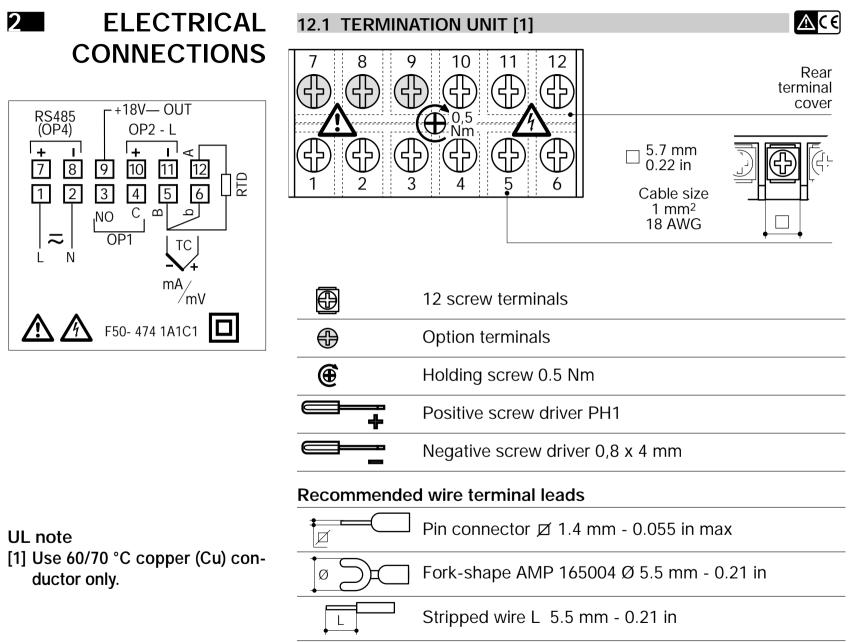

1.5.2 INSTALLATION SECURING

- **1** Position the mounting clamps
- 2 Push the mounting clamps towards the panel surface to secure the instrument

1.5.3 CLAMPS REMOVING

- 1 Insert the screwdriver in the clips of the clamps
- 2 Rotate the screwdriver

UL note


[1] For Use on a Flat Surface of a Type 2 and Type 3 'raintight' Enclosure.

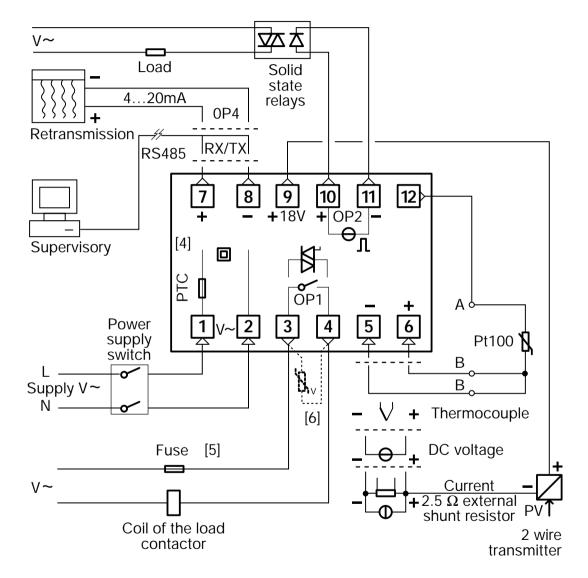
1.5.4 INSTRUMENT UNPLUGGING

- 1 Push and
- 2 pull to remove the instrument

2 - Electrical connections

PRECAUTIONS

Conduit for low level sensor cables Ċ D D F С 10 11 12 10 11 12 $\oplus \oplus \oplus \oplus$ ⊕ (45) ⊕ (\mathbb{P}) $\mathbf{A} = \text{Supply}$ $\mathbf{B} = Outputs$ **C** = Analog inputs **D** = Analogue output В В Α Α Serial communications **E** = SSR drive output Conduit for supply and output cables


Despite the fact that the instrument has been designed to work in an harsh and noisy environmental (level IV of the industrial standard IEC 801-4), it is strongly recommended to follow the following suggestions.

All the wiring must comply with the local regulations.

The supply wiring should be routed away from the power cables. Avoid to use electromagnetic contactors, power relays and high power motors nearby. Avoid power units nearby, especially if controlled in phase angle

Keep the low level sensor input wires away from the power lines and the output cables. If this is not achievable, use shielded cables on the sensor input, with the shield connected to earth.

2.3 TYPICAL INSTRUMENT WIRING

Notes:

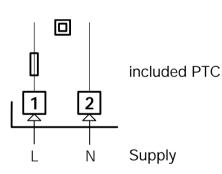
- 1] Make sure that the power supply voltage is the same indicated on the instrument.
- 2] Switch on the power supply only after that all the electrical connections have been completed.
- 3] In accordance with the safety regulations, the power supply switch shall bring the identification of the relevant instrument. The power supply switch shall be easily accessible from the operator.
- 4] The instrument is PTC protected. In case of failure it is suggested to return the instrument to the manufacturer for repair.
- 5] To protect the instrument internal circuits use:

- 2 A ~ T fuses for Relay outputs

- 1 A ~ T fuses for Triac outputs

6] Relay contacts are already protected with varistors.

Only in case of 24 V \sim inductive loads, use model A51-065-30D7 varistors (on request)

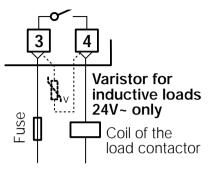


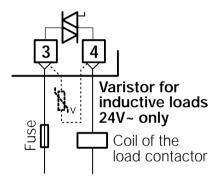
Δ

2.3.1 POWER SUPPLY

Switching power supply with multiple isolation and internal PTC

- Standard version: nominal voltage: 100 - 240V~ (- 15% + 10%) Frequency 50/60Hz
- Low Voltage version: Nominal voltage: 24V∼ (- 25% + 12%) Frequency 50/60Hz or 24V- (- 15% + 25%)
- Power consumption 1.6W max

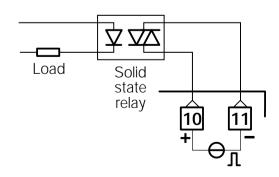

2.3.2 OP1 OUTPUT


A] Single relay output

 NO contact for resistive load of up to 2A / 250V~ max.

• NO contact for resistive load of

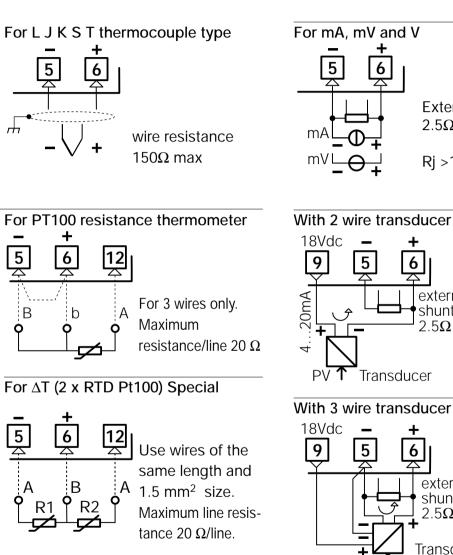
 Fuse 2A ∼ T (IEC 127)


up to 1A / 250V∼ max. • Fuse 1A∼ T

B] Triac Output

(IEC 127)

2.3.3 OP2 OUTPUT

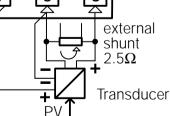

 SSR drive output, not isolated 0...5V-, ±20%, 30mA max

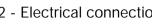
⋒ເ€

2.3.4 PV CONTROL INPUT

- · Connect the wires with the polarity as shown
- Use always compensation cable of the correct type for the thermocouple used
- The shield, if present, must be connected to a proper earth.
- If a 3 wires system is used, use always cables of the same diameter (1mm² min.) (line 20 Ω /lead maximum resistance)
- When using a 2 wires system, use always cables of the same diameter (1,5mm² min.) and put a jumper between terminals 5 and 6
- ♠ When the distance between the controller and the sensor is 15 mt. using a cable of 1.5 mm² diameter, produces an error on the measure of 1°C.

R1 + R2 must be $< 320\Omega$


With 3 wire transducer 6 external


6

external

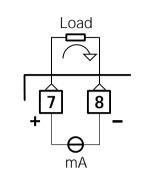
shunt

 2.5Ω

Δ

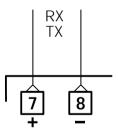
External shunt

2.5Ω


 $Rj > 10M\Omega$

2 - Electrical connections

2.3.5 OP4 OUTPUT (option)

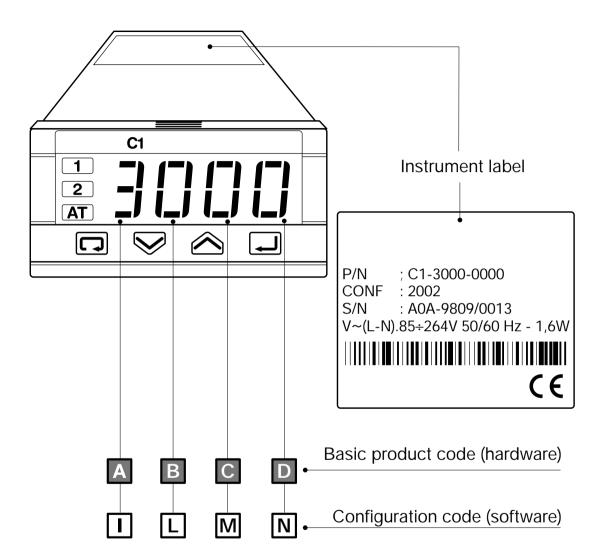

PV retransmission

- Galvanic isolation 500V ∼/1 min.
- 0/4...20mA, 750Ω/ 15V- max

2.3.6 SERIAL COMMUNICATIONS (option)

- Galvanic isolation 500V~/1 min
- Compliance to the EIA RS485 standard for Modbus/Jbus

▲ Please, read: gammadue[®] and deltadue[®] controller series serial communication and configuration


Δι

3 - Product coding

PRODUCT CODING

The complete code is shown on the instrument label. The informations about product coding are accessible from the front panel by mean of a particular procedure described at section 4.2.2 page 19

C 1

3.1 MODEL CODE

The product code indicate the specific hardware configuration of the instrument, that can be modified by specialized engineers only.

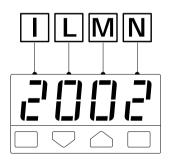
Line	Basic	Accessories	Configur.
Model: C 1	A B C D	- 0 F G 0	ILMN

Line

Power supply	Α
100 - 240V~ (- 15% + 10%)	3
24V~ (- 25% + 12%) or 24V– (- 15% + 25%)	5

OP1 Output	В
Relay	0
Triac	3

Serial Communications	Options	С	D
	None	0	0
Not fitted	Transmitter Power Supply (P.S.)	0	6
	Transmitter P.S. + Retransmission	0	7
RS485	None	5	0
Modbus/Jbus protocol	Transmitter Power Supply	5	6


User manual	F
Italian/English (std)	0
French/English	1
German/English	2
Spanish/English	3

Front panel colour	G
Dark (std)	0
Beige	1

3 - Product coding

3.2 CONFIGURATION CODING

The configuration code consists of 4 digits that identify the operating characteristic of the controller, as chosen by the user. Section 4.5 at pag. 26 reports the instructions how to set a new configuration code.

The configuration code can be displayed on the front panel, following the instructions at pag 19 section 4.2.2.

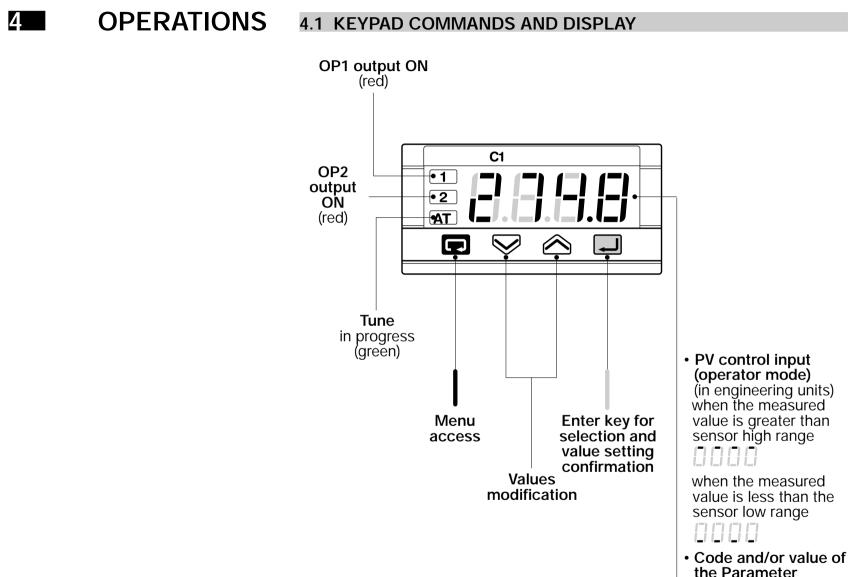
Input type and range			Ι
TR Pt100 IEC751	-99.9300.0 °C	-99.9572.9 °F	0
TR Pt100 IEC751	-200600 °C	-3281112 °F	1
TC L Fe-Const DIN43710	0600 °C	321112 °F	2
TC J Fe-Cu45% Ni IEC584	0600 °C	321112 °F	3
TC T Cu-CuNi	-200400 °C	-328752 °F	4
TC K Cromel -Alumel IEC584	01200 °C	322192 °F	5
TC S Pt10%Rh-Pt IEC584	01600 °C	322912 °F	6
DC input 050 mV, linear	engineering units	•	7
DC input 1050 mV, linear	engineering units		8
Custom input and range	•		9

Control mode	Output configuration	L
P.I.D.	Control OP1 / alarm AL2 on OP2	0
Γ.Ι.υ.	Control OP2 / alarm AL2 on OP1	1
On - Off	Control OP1 / alarm AL2 on OP2	2
011 - 011	Control OP2 / alarm AL2 on OP1	3
2 alarms	Alarm AL1 on OP1/ alarm AL2 on OP2	4
indicator	Alarm AL1 on OP2/ alarm AL2 on OP1	5

Type of control and safety		М
Reverse (AL1 active low)	Safety 0%	0
Direct (AL1 active high)	Safety 0%	1
Reverse (AL1 active low)	Safety 100%	2
Direct (AL1 active high)	Safety 100%	3

3 - Product coding

If, when the controller is powered up for the first time, the display shows the following message

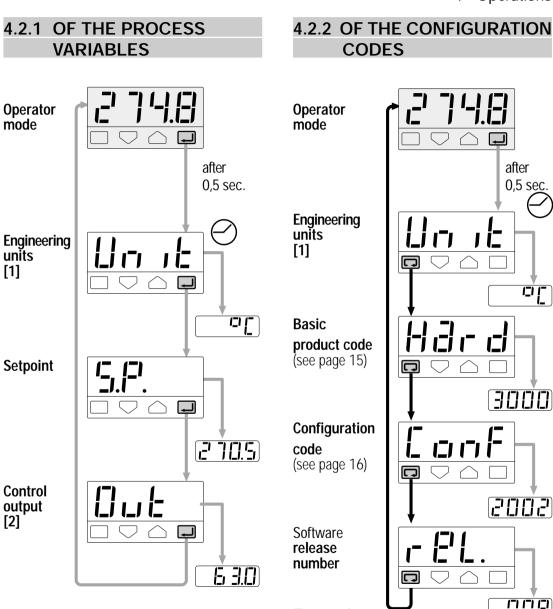

it means that the controller has not been configured yet.

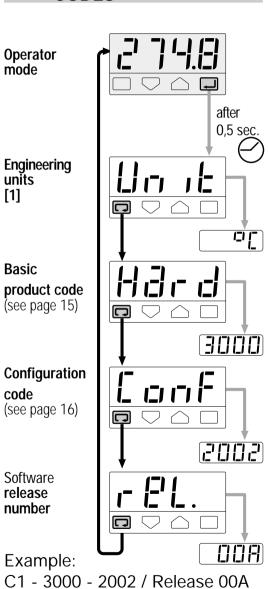
The controller remains in stand-by until the configuration code is set correctly (see chapter 4.6 pag 26).

Alarm 2 type and function		Ν
Not active		0
Sensor break al	arm	1
Absolute	active high	2
ADSOIULE	active low	3
Deviation [1]	active high	4
	active low	5
Deviation	active out (of the band)	6
band [1]	active in (the band)	7

Note

[1] Choice not available when the controller has been configured as 2 alarms indicator (L digit assigned to 4 or 5)


the Parameter (programming mode)


4.2 DISPLAY

When the display operation is selected, the controller presents automatically all the most important parameters and configuration information.

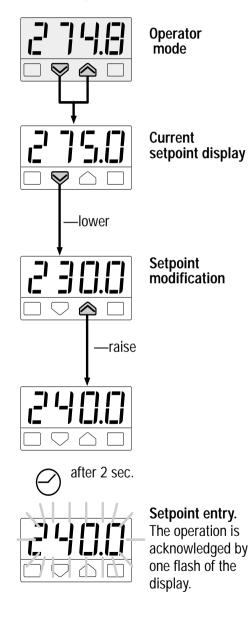
During the operation, the parameters values cannot be modified by the user

After 2 sec from the end of the operation, the controller flashes the display and returns to the normal operating conditions.

Note

- [1] See table page 27
- [2] This display is not presented if the instrument has been configured as an On - Off controller

4.3 PARAMETER SETTING

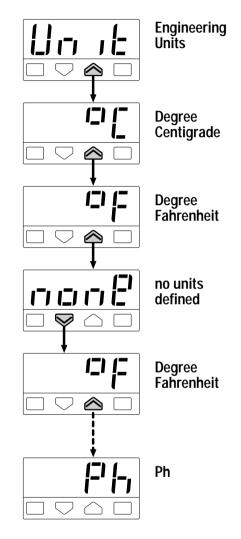

4.3.1 NUMERIC ENTRY

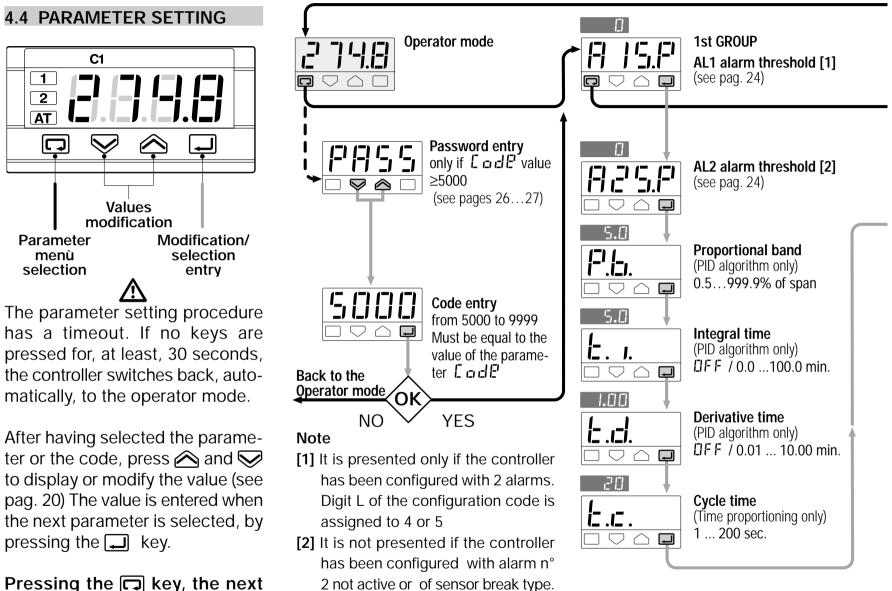
(i.e. the modification of the value of a stored Setpoint from 275.0 to 240.0)

Press \bigotimes or \bigotimes momentarily to change the value of 1 unit every push

Continued pressing of a or changes the value, at rate that doubles every second. Releasing the button the rate of change decreases.

In any case the change of the value stops when it has reached the max/min limit set for the parameter.

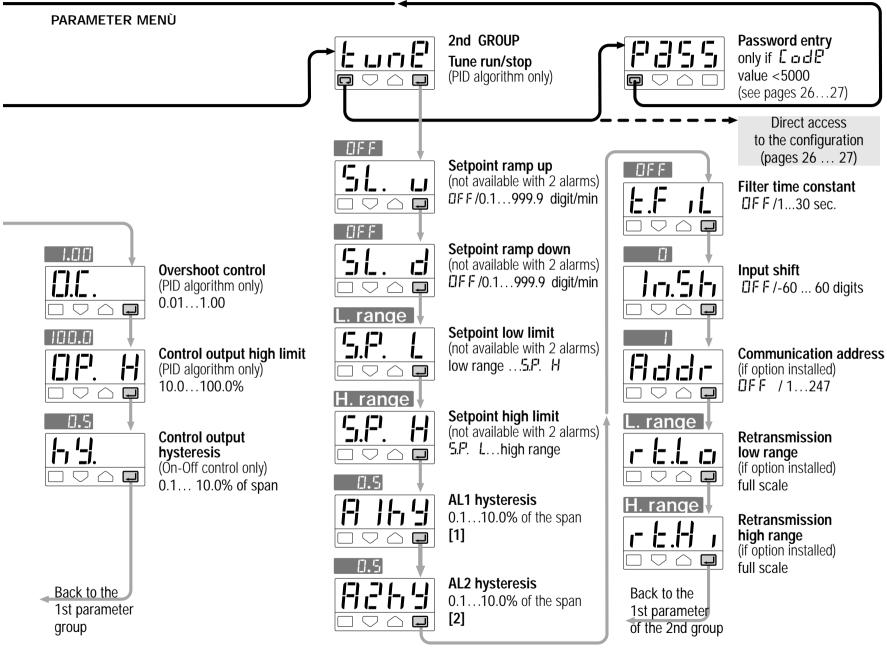



4.3.2 MNEMONIC CODES SETTING

(e.g. configuration see pages 26, 27)

Press the \bigtriangleup or \bigtriangledown to display the next or previous mnemonic for the selected parameter. Continued pressing of \bigtriangleup or \bigtriangledown

will display further mnemonics at a rate of one mnemonic every 0.5 sec. The mnemonic displayed at the time the next parameter is selected, is the one stored in the parameter.



Digit N of the configuration code is

assigned to 0 or 1.

Pressing the rate key, the next group of parameters is presented on the display.

4.5 PARAMETER

1st GROUP

The controller parameters have been organized in group, according to their functionality area.

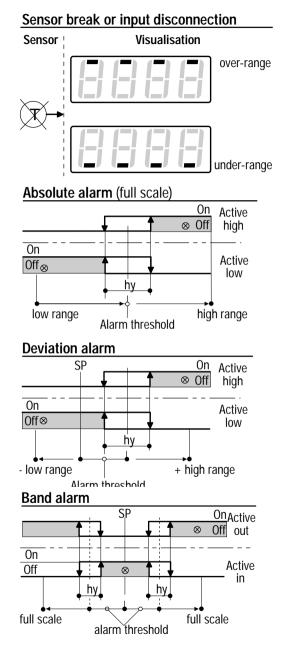
AL1 alarm threshold

The threshold is presented only if the controller have been configured with 2 alarms. (Digit L of the configuration code assigned to 4 or 5)

[7] [7] [5] [7]

AL2 alarm threshold

The alarm occurrences handle the OP1 and OP2 outputs, in different ways, according to the configured types of alarms, as illustrated.



Proportional band

This parameter specifies the proportional band coefficient that multiplies the error (SP - PV)

Integral

It is the integral time value, that

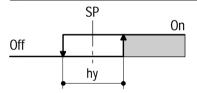
specifies the time required by the integral term to generate an output equivalent to the proportional term. When DFF the integral term is not included in the control algorithm.

It is the derivative term coefficient that specifies the time required by the proportional term P to reach the level of D. When $\square FF$ the derivative term is not included in the control algorithm.

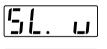
Control output cycle time

It's the cycle time of the time proportioning control output. The PID control output is provided through the pulse width modulation of the digital waveform.

This parameter specifies the span of action of the overshoot control. Setting lower values $(0.99 \rightarrow 0.01)$ the overshoot generated by a Setpoint change is reduced. The overshoot control doesn't affect the effectiveness of the PID algorithm. Setting 1, the overshoot control is disabled.


Control output high limit

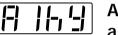
It specifies the maximum value the control output can be set


Control output hysteresis

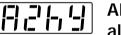

Hysteresis of the threshold

Control output hysteresis span, set in % of the full scale.

2nd GROUP


This parameter specifies the maximum rate of change of the Setpoint in digit/min. When the parameter is DFF, this function is disabled.

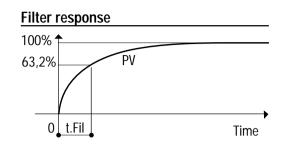
Setpoint 5.2. low limit

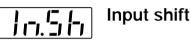

Low limit of the setpoint value. When the parameter is DFF, this function is disabled.

Setpoint iΤ high limit

High limit of the setpoint value. When the parameter is DFF, this function is disabled.

AL1 alarm hysteresis

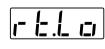



AL2 alarm hysteresis

Hysteresis of the threshold of both the alarms, that activate OP1 and OP2 control output. It is specified as a % of the full scale.

Input filter time constant

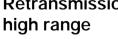
Time constant, in seconds, of the RC input filter applied to the PV input. When this parameter is set to DFF the filter is bypassed.



This value is added to the measured PV input value. Its effect is to shift the whole PV scale of up to \pm 60 digits.

Controller address

the address range is from 1 to 247 and must be unique for each controller on the communication bus to the supervisor.


When set to **DFF** the controller is not communicating

Retransmission

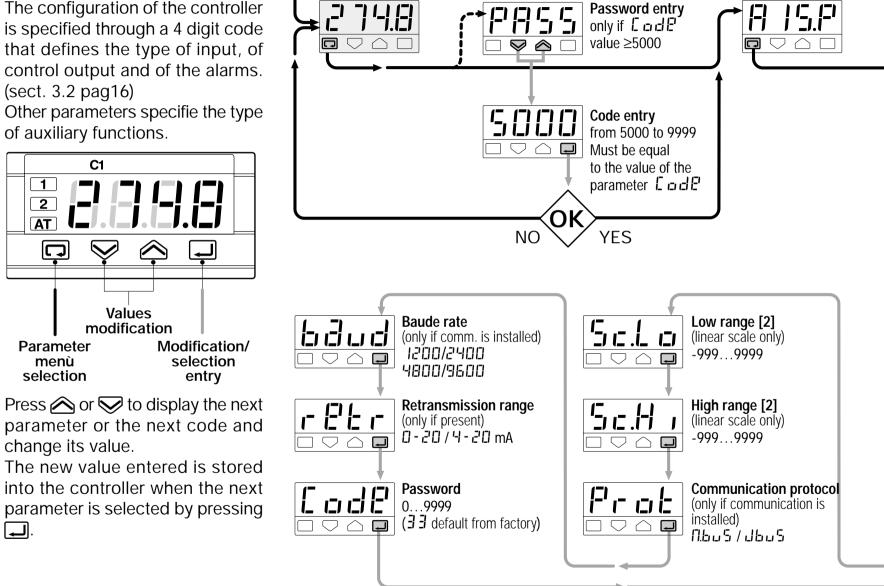
low range Retransmission

These parameters define the range of the OP4 retransmission output. Example: 4..20 mA output corresponding to 20...120°C.

1

2

AT

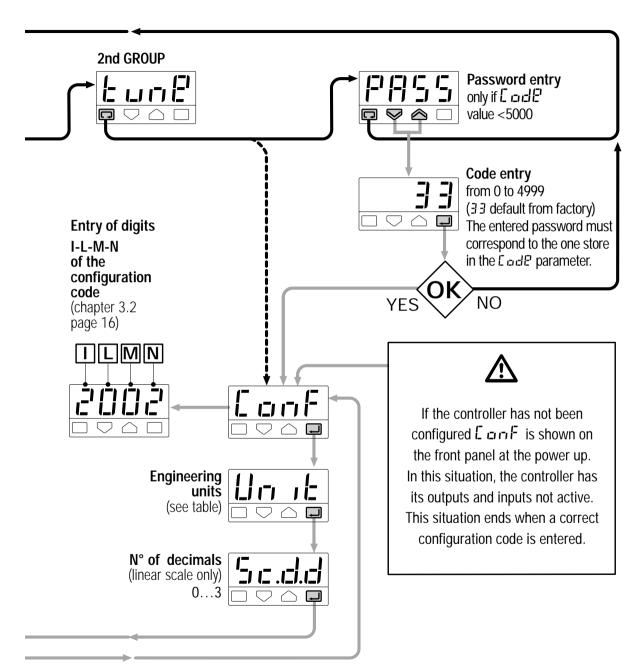

Parameter

menù

selection

4.6 CONFIGURATION

The configuration of the controller is specified through a 4 digit code that defines the type of input, of control output and of the alarms. (sect. 3.2 pag16) Other parameters specifie the type of auxiliary functions.



Operator mode

CONFIGURATION MENU

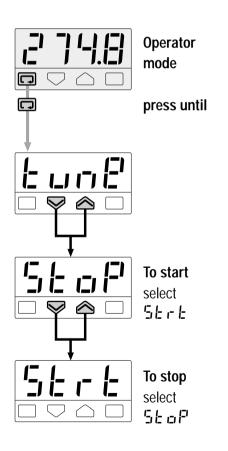
1st GROUP

.

Note

Pressing the 🕞 the next group of parameters is displayed.

[1] Table of the supported Engineering Units.


Centigrade degrees *	70
Fahrenheit degrees *	٥Ļ
none	non8
mV	пIJ
Volt	IJ
mA	NA
Ampere	A
Bar	687
PSI	P5
Rh	r h
рН	Ph

* For inputs from thermocouple or resistance thermometer, the choice is between °C and °F only.
[2] Range of min 100 digits.

AUTOMATIC TUNE

Start/stop of the Fuzzy Tuning The Tuning operation can be started or stopped any time.

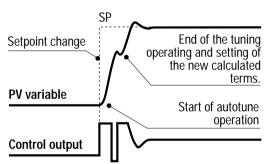
The green led **AT** goes on when the Fuzzy Tuning is in progress. At the end of this operation, the calculated PID terms parameter are stored and used by the control algorithm and the controller goes back to the operator mode. The green led **AT** becomes off.

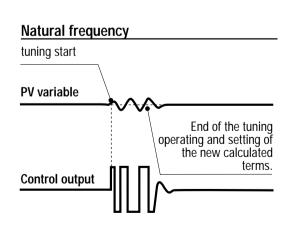
This function allows the calculation of the optimal PID terms parameters, monitoring the response of the process to disturbances.

The controller provides 2 types of "one shot" tuning algorithm, that are selected automatically according to the process condition when the operation is started.

Step response

This type is selected when, at the start of the autotune operation, the PV is far from the Setpoint of more than 5% of the span. This method has the big advantage of fast calculation, with a reasonable accuracy in the term calculation.


Natural frequency


This type is selected when the PV is close to the SP setpoint.

This method has the advantage of a better accuracy in the term calculation with a reasonable speed calculation.

The Fuzzy Tuning determines automatically the best method to use to calculate the PID term, according the process conditions.

Step response

TECHNICAL SPECIFICATIONS

Features (at 25°C environmental temp.)	Description			
Total configurability see par. 3.2 pag. 16 par. 4.6 pag. 26	From keypad or serial communication the user selects: the type of input - the associated functions and the corresponding outputs - the type of control algo- rithm - the type of output and the safe conditions - the type and functionality of the alarms - the values of all the control parameters.			
PV Input (see pag.12 and pag. 16)	Common characteristics	A/D converter with resolution of 50.000 points Update measurement time: 0.2 seconds Sampling time: 0.5 seconds Input bias: - 60+ 60 digit Input filter with enable/disable: 130 seconds		
	Accuracy	$0.25\% \pm 1$ digits for temperature sensors $0.1\% \pm 1$ digits (for mV and mA)		Between 100240V~ the error is minimal
	Resistance thermometer	Pt100Ω at 0°C (IEC 751) °C/°Fselectable	2 or 3 wires connection	Max. wire Res.: 20Ω max (3 wires) Sensitivity: 0.35°C/10°C Env. Temp. <0.35°C / 10Ω Wire Res.
	Thermocouple	L,J,T,K,S (IEC 584) °C/°F selectable	Internal cold junction compensation in °C/°F	Max. wire Res.: 150Ω max: <2μV/°C Env. Temp. <5μV / 10Ω Wire Res.
	DC input (current)	$\begin{array}{l} 4\dots 20mA, 0\medskip 2.5\Omega\\ \medskip with external shunt 2.5\Omega\\ \medskip S 10M\Omega \end{array}$	Engineering units Conf. decimal point position Init. Sc9999999	Input drift: <0.1% / 20°C Env. temp.
	DC input (voltage)	1050mV, 0-50mV Rj >10M Ω	Full Sc9999999 (min. range of 100 digits)	

6 - Technical specification

Features (at 25°C enviromental temp.)	Description					
Operating mode and Outputs	Indicator with 2 alarms		AL1 alarm		AL2 alarm	
			OP1 - Relay or	Triac	OP2 - SSR drive	
			OP2 - SSR driv	SSR drive OP1 - Rela		or Triac
	1 PID loop or 1 ON-OFF loop with 1 Alarm		Control output		AL2 alarm	
			OP1 - Relay or	or Triac OP2 - SSR		rive
			OP2 - SSR driv		OP1 - Relay	or Triac
	Algorithm		PID with overshoot control or ON OFF			
	Proportional band (P)		0.5999.9%		-	
	Integral time (I)		0.1100.0 mi		Off = 0	
Control Mode	Derivative time (D)		0.0110.00 min		011 = 0	PID algorithm
	Cycle time		1200 sec			
	Overshoot control		0.011.00		_	
	High limit		100.010.0%			
	Hysteresis		0.110.0%		ON-OFF algorithm	
OP1 output	SPST Relay N.O., 2A/250V \sim for resistive load Triac, 1A/250V \sim for resistive load					
OP2 output	SSR drive, not isolated: 5V-, ± 10%, 30mA max					
AL1 alarm	Hysteresis 0.110,0% full scale					
(indicator with 2 alarms)	Active high Active low		Absolute threshold, whole range			
	Hysteresis 0.110,0% c.s.					
AL2 alarm	Action	Active high Active low	 Action type 	Deviation thresh	old ±rang	е
				Band threshold	0ra	nge
				Absolute thresho	old whole	range
		Special function	Sensor break	·		

Features (at 25°C enviromental temp.)	Description			
	Ramp up and down		0.1999.9 digit/min (Off = 0)	
Setpoint	Low limit		From low range to the high limit	
	High limit		From low limit to the high range	
OP4 PV retransmission (option)	Galvanic isolation: 500 V∼/1 min Resolution 12bit (0.025%) Accuracy: 0.1 %		Current output: $0/420$ mA 750 $\Omega/15V$ max	
One shot Fuzzy-Tuning	The controller selects aut	5	Step response	
with automatic selection	method according to the process conditions		Natural frequency	
Serial comm. (option)	RS485 isolated, Modbus/Jbus protocol, 1200, 2400, 4800, 9600 bit/sec 2 wires			
Auxiliary Supply	+18V- ±20%, 30mA max for an external transmitter supply			
Operational safety	Measure input		ange, short circuit or sensor break with automatic ety strategies and alerts on display	
	Control output	Safety value: 0+100%. (user enabled/disabled)		
	Parameters	parameter and configuration data are stored in a non volatile memory for an unlimited time		
	Access protection	Password to access the configuration and parameters data		
	Power supply	100 - 240V~ (- 15% + 10%) 50/60Hz or 24V~ (- 25% + 12%) 50/60Hz and 24V– (- 15% + 25%) Power consumption 1.6W max		
General	Electric safety	Compliance to EN61010, installation class 2 (2500V) pollution class 2		
characteristics				
	UL and cUL Omologation	1 File 176452		
	Protection EN650529	IP20 termination unit IP65 front panel		
	Dimensions	¹ / ₃₂ DIN - 48 x 24, depth 120 mm, weight 100 gr. apx.		

WARRANTY

We warrant that the products will be free from defects in material and workmanship for 3 years from the date of delivery. The warranty above shall not apply for any failure caused by the use of the product not in line with the instructions reported on this manual.

ASCON'S WORLDWIDE SALES NETWORK

SUBSIDIARY

FRANCE

ASCON FRANCE

Phone0033 1 64 30 62 62Fax0033 1 64 30 84 98

AGENCE SUD-EST

Phone0033 4 74 27 82 81Fax0033 4 74 27 81 71

AGENCE RÉGION-EST

Phone0033 3 89 76 99 89Fax0033 3 89 76 87 03

DISTRIBUTORS

ARGENTINA

MEDITECNA S.R.L.Phone+5411 4585 7005Fax+5411 4585 3437

AUSTRALIA

 IPA INDUSTRIAL PYROMETER

 (Aust) PTY.LTD

 Phone
 +61 8 8352 3688

 Fax
 +61 8 8352 2873

FINLAND & ESTONIA

TIM-TOOL OYPhone+358 50 501 2000Fax+358 9 50 55 144

GERMANY

 Mesa Industrie Elektronik GMBH

 Phone
 +49 2365 915 220

 Fax
 +49 2365 915 225

GREECE

 CONTROL
 SYSTEM

 Phone
 +30
 23
 10
 521
 055-6

 Fax
 +30
 23
 10
 515
 495

 BRANCH
 OFFICE

 Phone
 +30
 1
 646
 6276

 Fax
 +30
 1
 646
 6862

HOLLAND

TEMPCONTROL I.EP. B.V.Phone+31 70 347 64 31Fax+31 70 38 22 55 16

PORTUGAL

 REGIOUIPAMENTOS LDA

 Phone
 +351 21 989 0738

 Fax
 +351 21 989 0739

SPAIN

 INTERBIL
 S.L.

 Phone
 +34
 94
 453
 50
 78

 Fax
 +34
 94
 453
 51
 45

BRANCH OFFICES

Phone+34 93 311 98 11Fax+34 93 311 93 65Phone+34 91 656 04 71Fax+34 91 656 04 71

SWITZERLAND

CONTROLTHERM GMBH

Phone +41 1 954 37 77 Fax +41 1 954 37 78

TURKEY

 KONTROL
 SISTEMLERI
 LTD

 Phone
 +90
 216
 527
 96
 15

 Fax
 +90
 216
 527
 96
 20

UNITED KINGDOM

ЕИКЕRO CONTROLS LTDPhone+44 20 8568 4664Fax+44 20 8568 4115